Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition.

نویسندگان

  • S A Manafi
  • B Yazdani
  • M R Rahimiopour
  • S K Sadrnezhaad
  • M H Amin
  • M Razavi
چکیده

In this study, hydroxyapatite (denoted as HAp) nanostructure with uniform morphologies, controllable size, nano-dispersion and narrow size distribution in diameter has been synthesized successfully by low-temperature hydrothermal process, and the as-synthesized powders were characterized by XRD, scanning electron microscopy, high-resolution transmission microscopy, FT-IR, Zetasizer and inductively coupled plasma. In the present work, a novel sonochemical technique using CaHPO(4)2H(2)O/NaOH/distilled water with cetyltrimethylammonium bromide ((CH(3)(CH(2))(15)N(+)(CH(3))(3)Br(-)) designated as CTAB) under a hydrothermal condition to synthesize HAp nanostructure was described. Furthermore, the usage of a high basic condition and a water environment are the two crucial keys in ensuring the formation of HAp in the hydrothermal/sonochemical processes. However, the crystallite size and crystallinity degree of the HAp increased with increasing annealing temperature. Indeed, the present work will introduce a new method in synthesizing HAs for scientific and medical engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Hydroxyapatite Nanostructure by Hydrothermal Condition for Biomedical Application

      In this investigation, hydroxyapatite (HAp) nanostructure with uniform morphologies, controllable size, nano-dispersion and narrow-size distribution in diameter has been synthesized successfully by low-temperature hydrothermal process, and the as-synthesized powders were characterized by energy-dispersive X-ray spectroscopy, scanning electron microscopy, high-resolution transmission elect...

متن کامل

Effect of Ultrasonic on Crystallinity of Nano-Hydroxyapatite via Wet Chemical Method

     In a hydrothermal route devoted for synthesis of Ca10(PO4)6(OH)2 (HA) nanostructures, morphology can be controlled by experimental condition to form magical HA or nanostructured nanoparticles. In an intermediate condition, a novel nanostructure namely rose-like bundle of HA rod-likes was found, which is different from known HA nanostructures. The...

متن کامل

Effect of Surfactant in Formation of Hydroxyapatite Nano-Rods under Hydrothermal Conditions

      Hydroxyapatite (HA) nano-rods with uniform morphology and controllable size have been successfully synthesized in the presence of cationic and non-ionic surfactants by a hydrothermal method. (NH4) 2HPO4 and Ca(NO 3)2.4H2O were used as the phosphorus and calcium sources, respectively. The composition of synthesized powders w...

متن کامل

Hydrothermal Synthesis of Aligned Hydroxyapatite Nanorods with Ultra-High Crystallinity

Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH3(CH2)15N+(CH3)3Br-) was designated as CTAP)/Ca(NO3)2/(NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystalHAp nanorods with diameter of 20 ±...

متن کامل

Synthesis of Peculiar Structure of Hydroxyapatite Nanorods by Hydrothermal Condition for Biomedical Applications

      In the present work, the effect of Ca(NO3)2.4H2O and (NH4)2HPO4 primary solutions as the beginning materials in synthesis of a calcium phosphate phase, was examined. So, we investigated the wet chemical reactions in solution at different temperatures by a hydrothermal condition aimed at hydroxyapatite (Ca10(PO<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2008